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Motivation

I We want to identify distinct, “high-quality”, local minimizers of

minimize f (x)

l ≤ x ≤ u

x ∈ Rn

I High-quality can be measured by more than the objective.

I Derivatives of f may or may not be available.

I The simulation f is likely using parallel resources, but it does not
utilize the entire machine.
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Why concurrency? Tiled QR example
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[Bouwmeester, et al., Tiled QR Factorization Algorithms, 2011]
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Global optimization is difficult

Theorem (Törn and Žilinskas, Global Optimization, 1989)

An algorithm converges to the global minimum of any continuous f on
a domain D if and only if the algorithm generates iterates that are
dense in D.

I Either assume additional properties about the problem
I convex f
I separable f
I finite domain D

I concurrent evaluations of f

I Or possibly wait a long time (or forever)

The theory can be more than merely checking that a method generates
iterates which are dense in the domain.

An algorithm must trade-off between “refinement” and “exploration”.
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Multistart Methods
Given some local optimization routine L:

Algorithm 1: General Multistart

for k = 1, 2, . . . do
Evaluate f at N points drawn from D
Start L at some set (possibly empty) of previously evaluated points

I Get to use problem specific local optimization routines.
I Possibly multiple levels of parallelism (objective, local method, global

method); L may involve many sequential evaluations of f . . .

I Which points should start runs?
I If resources are limited, how should points from each run receive

priority?

I Ideally, only one run is started for each minima.
I Exploring by sampling. Refining with L.
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Multi-Level Single Linkage
Given some local optimization routine L:

Algorithm 2: MLSL

for k = 1, 2, . . . do
Sample f at N random points drawn uniformly from D
Start L at all sample points x :

I that has yet to start a run
I @xi : ‖x − xi‖ ≤ rk and f (xi ) < f (x)

[Rinnooy Kan and Timmer, Mathematical Programming, 39(1):57–78, 1987]

I Doesn’t naturally translate when evaluations of f are limited

I Ignores some points when deciding where to start L
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Multi-Level Single Linkage

k = 1; rk = 0.71575;
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Multi-Level Single Linkage

k = 2; rk = 0.60537;
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Multi-Level Single Linkage
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Multi-Level Single Linkage
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Multi-Level Single Linkage

k = 5; rk = 0.45268;
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Multi-Level Single Linkage
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Multi-Level Single Linkage

k = 18; rk = 0.28209;
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Multi-Level Single Linkage

k = 20; rk = 0.27073;
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Multi-Level Single Linkage

k = 22; rk = 0.26079;
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Multi-Level Single Linkage

I f ∈ C 1, with local minima in the interior of D, and the distance
between these minima is bounded away from zero.

I L is strictly descent and converges to a minimum (not a stationary
point).

I

rk =
1√
π

n

√
Γ
(
1 +

n
2

)
vol (D)

σ log kN
kN

(1)

Theorem
If rk → 0, all local minima will be found almost surely.

If rk is defined by (1) with σ > 4, even if the sampling continues
forever, the total number of local searches started is finite almost surely.
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POSMM
MLSL: (S2)–(S4)

POSMM: (S1)–(S4), (L1)–(L6)

x̂ ∈ Sk

(S1) @x ∈ Lk with
[‖x̂ − x‖ ≤ rk and f (x) < f (x̂)]

(S2) @x ∈ Sk with
[‖x̂ − x‖ ≤ rk and f (x) < f (x̂)]

(S3) x̂ has not started a local
optimization run

(S4) x̂ is at least µ from ∂D and ν
from known local minima

x̂ ∈ Lk

(L1) @x ∈ Lk

[‖x̂ − x‖ ≤ rk and f (x) < f (x̂)]

(L2) @x ∈ Sk with
[‖x̂ − x‖ ≤ rk and f (x) < f (x̂)]

(L3) x̂ has not started a local
optimization run

(L4) x̂ is at least µ from ∂D and ν
from known local minima

(L5) x̂ is not in an active local
optimization run and has not
been ruled stationary

(L6) ∃rk -descent path in Hk from
some x ∈ Sk satisfying (S2-S4)
to x̂
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POSMM

Iteration: 0; r_k: Inf
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POSMM

Iteration: 1; r_k: 0.743

11 of 26.



POSMM

Iteration: 2; r_k: 0.743
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POSMM

Iteration: 3; r_k: 0.689
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POSMM

Iteration: 4; r_k: 0.643
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POSMM

Iteration: 5; r_k: 0.605
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POSMM

Iteration: 6; r_k: 0.605
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POSMM
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Iteration: 10; r_k: 0.605
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Iteration: 35; r_k: 0.605
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Iteration: 36; r_k: 0.605
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Iteration: 37; r_k: 0.589

11 of 26.



POSMM

Iteration: 38; r_k: 0.574
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Iteration: 39; r_k: 0.560

11 of 26.



POSMM

Iteration: 40; r_k: 0.548
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Iteration: 41; r_k: 0.536
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Iteration: 42; r_k: 0.525
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Iteration: 43; r_k: 0.515
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Iteration: 44; r_k: 0.497
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Iteration: 45; r_k: 0.480
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Iteration: 80; r_k: 0.281
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Iteration: 81; r_k: 0.279

11 of 26.



POSMM

Iteration: 82; r_k: 0.276
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Iteration: 83; r_k: 0.274
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Iteration: 84; r_k: 0.272
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Iteration: 85; r_k: 0.270

11 of 26.



POSMM

Iteration: 86; r_k: 0.268
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Iteration: 87; r_k: 0.266
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Iteration: 88; r_k: 0.264
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Iteration: 89; r_k: 0.263
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Iteration: 90; r_k: 0.262

11 of 26.



POSMM

Iteration: 91; r_k: 0.261

11 of 26.



POSMM

Iteration: 92; r_k: 0.260
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Iteration: 93; r_k: 0.259
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Iteration: 94; r_k: 0.258
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Iteration: 95; r_k: 0.257
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Iteration: 96; r_k: 0.256
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Iteration: 97; r_k: 0.255
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Iteration: 98; r_k: 0.255
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Iteration: 99; r_k: 0.254
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Properties of the local optimization method

Necessary:
I Honors a starting point
I Honors bound constraints

ORBIT satisfies these [Wild, Regis, Shoemaker, SIAM-JOSC, 2008]

BOBYQA satisfies these [Powell, 2009]

Possibly beneficial:
I Can return multiple points of interest
I Reports solution quality/confidence at every iteration
I Can avoid certain regions in the domain
I Uses a history of past evaluations of f
I Uses additional points mid-run
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APOSSM Theory

Theorem
Given the same assumptions as MLSL, APOSSM will start a finite
number of local optimization runs with probability 1.

Assumption

There exists K0 <∞ so that for any K0 consecutive iterations, there is
a positive (bounded away from zero) probability of evaluating a point
from the sample stream and each existing local optimization run.

Theorem
Each x∗ ∈ X ∗ will almost surely be either identified in a finite number of
evaluations or have a single local optimization run that is converging
asymptotically to it.
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Measuring Performance

GLODS Global & local optimization using direct search [Custódio, Madeira

(JOGO, 2014)]

Direct Serial DIRECT [D. Finkel’s MATLAB code]

pVTDirect Parallel DIRECT [He, Watson, Sosonkina (TOMS, 2009)]

Random Uniform sampling over domain (as a baseline)

POSMM
I Local optimization method

I ORBIT [Wild, Regis, & Shoemaker (SIAM JOSC, 2008)]
I BOBYQA [Powell, 2009]

I Initial sample size: 10n

I Each method evaluates Direct’s 2n + 1 initial points.

14 of 26.
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(A)POSMM Manager
Algorithm 3: Manager Logic

while k < fevalmax do
MPI.recv(MPI.ANY_SOURCE)
if Received from Custodian then

Check Hk

Add new point to QL

if Received from Worker then
Update Hk

Possibly get a Custodian working on the next point
Run decide_where_to_start
Possibly update QL

if sync=False OR All Workers/Custodians are done then
Give from QL or RS to available worker(s)

16 of 26.



POSMM
MLSL: (S2)–(S4) POSMM: (S1)–(S4), (L1)–(L6)

x̂ ∈ Sk

(S1) @x ∈ Lk with
[‖x̂ − x‖ ≤ rk and f (x) < f (x̂)]

(S2) @x ∈ Sk with
[‖x̂ − x‖ ≤ rk and f (x) < f (x̂)]

(S3) x̂ has not started a local
optimization run

(S4) x̂ is at least µ from ∂D and ν
from known local minima

x̂ ∈ Lk

(L1) @x ∈ Lk

[‖x̂ − x‖ ≤ rk and f (x) < f (x̂)]

(L2) @x ∈ Sk with
[‖x̂ − x‖ ≤ rk and f (x) < f (x̂)]

(L3) x̂ has not started a local
optimization run

(L4) x̂ is at least µ from ∂D and ν
from known local minima

(L5) x̂ is not in an active local
optimization run and has not
been ruled stationary

(L6) ∃rk -descent path in Hk from
some x ∈ Sk satisfying (S2-S4)
to x̂

17 of 26.



Measuring Performance

Notation:

Let X ∗ be the set of all local minima of f .
Let f ∗(i) be the ith smallest value {f (x∗)|x∗ ∈ X ∗}.
Let x∗(i) be the element of X ∗ corresponding to the value f ∗(i).

The global minimum has been found at a level τ > 0 at batch k if an
algorithm it has found a point x̂ satisfying:

f (x̂)− f ∗(1) ≤ (1− τ)
(
f (x0)− f ∗(1)

)
,

where x0 is the starting point for problem p.

18 of 26.



Measuring Performance

Notation:

Let X ∗ be the set of all local minima of f .
Let f ∗(i) be the ith smallest value {f (x∗)|x∗ ∈ X ∗}.
Let x∗(i) be the element of X ∗ corresponding to the value f ∗(i).

The j best local minima have been found at a level τ > 0 at batch k if:∣∣∣{x∗(1), . . . , x
∗
(j−1)

}⋂{
x∗(i) : ∃x ∈ Hk with

∥∥∥x − x∗(i)

∥∥∥ ≤ rn(τ)
}∣∣∣ = j − 1

&∣∣∣{x∗(j), . . . , x
∗
(̄j)

}⋂{
x∗(i) : ∃x ∈ Hk with

∥∥∥x − x∗(i)

∥∥∥ ≤ rn(τ)
}∣∣∣ ≥ j − j + 1,

where j and j̄ are the smallest and largest integers such that

f ∗
(̄j) = f ∗(j) = f ∗(j) and where rn(τ) =

n
√

τ vol(D)Γ( n
2 +1)

πn/2 .

18 of 26.



Problems considered
GKLS problem generator [Gaviano et al., “Algorithm 829” (TOMS, 2003)]

I 600 synthetic problems with known local minima

I n = 2, . . . , 7

I 10 local minima in the unit cube with a unique global minimum

I 100 problems for each dimension

I 5 replications (different seeds) for each problem

I 5000 evaluations

19 of 26.



Data Profiles
f (x)− f ∗(1) ≤ (1− 10−5)

(
f (x0)− f ∗(1)

)
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Random Sampling
pVTdirect 4 workers
Direct (serial)
GLODS (serial)
Direct (idealized)
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Data Profiles (increasing workers)
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Data Profiles (vs random)
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Data Profiles (vs random)
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Data Profiles (vs random)
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Data Profiles (vs random)
Within n
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Data Profiles (vs random)
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Data Profiles (forcing runs)
f (x)− f ∗(1) ≤ (1− 10−5)

(
f (x0)− f ∗(1)

)
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Data Profiles (forcing runs)
Within n

√
10−4Γ( n

2 +1)

πn/2 of 3 best minima

200 400 600 800 1000 1200 1400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

d
(α

)

 

 

W=8, sync=True, F=0
W=8, sync=True, F=1
W=8, sync=True, F=2
W=8, sync=True, F=4
W=8, sync=True, F=8

23 of 26.



Closing Remarks

I Concurrent function evaluations can locate multiple minima while
efficiently finding a global minimum.

I The ability to find many minima scales well with the number of
workers.

Questions:
I Finding (or designing) the best local solver for our framework?
I Best way to process the queue?
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(A)POSMM Manager

Algorithm 3: Manager Logic

while k < fevalmax do
MPI.recv(MPI.ANY_SOURCE)
if Received from Custodian then

Check Hk

Add new point to QL

if Received from Worker then
Update Hk

Possibly get a Custodian working on the next point
Run decide_where_to_start
Possibly update QL

if sync=False OR All Workers/Custodians are done then
Give from QL or RS to available worker(s)
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Pausing runs
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